首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Solution 1H nuclear magnetic resonance determination of hydrogen bonding of the E10 (66) Arg side-chain to the bound ligand in Aplysia cyano-met myoglobin.
Authors:J Qin  G N La Mar  F Ascoli  M Bolognesi  M Brunori
Institution:Department of Chemistry, University of California, Davis 95616.
Abstract:A combined one-dimensional nuclear Overhauser effect, paramagnetic-induced relaxation and two-dimensional sequence-specific 1H n.m.r. assignment of the spectrum of portions of the distal pocket of Aplysia cyano metMyoglobin (metMbCN) has been carried out in order to establish the presence and identity of distal residues in the heme pocket. In the absence of the usual distal E7 His in Aplysia Mb (E7 Val), the sequence-specific assignment of the E7 and E10 residues, together with their hyperfine shift patterns, relaxivities and dipolar connectivities to each other and the remainder of the E helix, reveal that the E10 Arg is turned into the pocket and hydrogen bonds to the bound cyanide group. We have previously found a similar rearrangement of the E10 Arg in Aplysia fluoro metMyoglobin, and the stabilizing effect of this residue was proposed to be responsible for the slow rate of cyanide dissociation from rapidly reduced ferrous Aplysia myoglobin. Based on the similar distal E7 His hydrogen-bonding interaction to the bound ligand in the crystal of sperm whale MbO2 and in solution of its cyano met complex, we propose that the E10 Arg similarly hydrogen bonds to the bound O2 in Aplysia MbO2 and accounts for its strong ligand binding and slow dissociation rate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号