Abstract: | Adenosine deaminase and adenosine deaminase complexing protein have been localized in rabbit brain. Brains fixed in paraformaldehyde or in Clarke's solution were blocked coronally. Blocks from brains fixed in paraformaldehyde were either frozen in liquid nitrogen or embedded in paraffin. Tissue fixed in Clarke's solution was embedded in paraffin. Sections from each block were stained by the peroxidase-antiperoxidase method for adenosine deaminase or complexing protein using affinity-purified goat antibodies. Adenosine deaminase and complexing protein did not co-localize. Adenosine deaminase was detected in oligodendroglia and in endothelial cells lining blood vessels, whereas complexing protein was concentrated in neurons. The subcellular location and appearance of the peroxidase reaction product associated with individual cells was also quite distinctive. The cell bodies of adenosine deaminase-positive oligodendroglia were filled with intense deposits of peroxidase reaction product. In contrast to oligodendroglia, the reaction product associated with most neurons stained for complexing protein was concentrated in granular-appearing cytoplasmic deposits. In some instances, these deposits were clustered about the nuclear membrane. Staining of neurons in the granular layer of cerebellum was an exception. Granule cells were lightly outlined by peroxidase reaction product. Cerebellar islands, also referred to as glomeruli, were stained an intense uniform brown. These results raise the possibility that oligodendroglia and blood vessel endothelia, through the action of adenosine deaminase, might play a role in controlling the concentration of extracellular adenosine in brain. They do not, however, support the suggestion that complexing protein aids in adenosine metabolism by positioning adenosine deaminase on the plasma membrane. |