首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction.
Authors:R Jaggi  W C van Heeswijk  H V Westerhoff  D L Ollis  and S G Vasudevan
Institution:Department of Biochemistry and Molecular Biology, James Cook University, Townsville, Queensland 4811, Australia.
Abstract:Adenylyl transferase (ATase) is the bifunctional effector enzyme in the nitrogen assimilation cascade that controls the activity of glutamine synthetase (GS) in Escherichia coli. This study addresses the question of whether the two antagonistic activities of ATase (adenylylation and deadenylylation) occur at the same or at different active sites. The 945 amino acid residue ATase has been truncated in two ways, so as to produce two homologous polypeptides corresponding to amino acids 1-423 (AT-N) and 425-945 (AT-C). We demonstrate that ATase has two active sites; AT-N carries a deadenylylation activity and AT-C carries an adenylylation activity. Glutamine activates the adenylylation reaction of the AT-C domain, whereas alpha-ketoglutarate activates the deadenylylation reaction catalysed by the AT-N domain. With respect to the regulation by the nitrogen status monitor PII, however, the adenylylation domain appears to be dependent on the deadenylylation domain: the deadenylylation activity of AT-N depends on PII-UMP and is inhibited by PII. The adenylylation activity of AT-C is independent of PII (or PII-UMP), whereas in the intact enzyme PII is required for this activity. The implications of this intramolecular signal transduction for the prevention of futile cycling are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号