首页 | 本学科首页   官方微博 | 高级检索  
     


Proteome analysis of human mesothelial cells during epithelial to mesenchymal transitions induced by shed menstrual effluent
Authors:Demir Ayşe Y  Demol Hans  Puype Magda  de Goeij Anton F P M  Dunselman Gerard A J  Herrler Andreas  Evers Johannes L H  Vandekerckhove Joël  Groothuis Patrick G
Affiliation:Research Institute Growth and Development (GROW), Maastricht University, Maastricht, The Netherlands. demirweusten@yahoo.com
Abstract:Peritoneal endometriosis is the result of ectopic implantation and growth of endometrium tissue that has been regurgitated into the abdominal cavity during menstruation. We have previously shown that menstrual effluent induces epithelial to mesenchymal transitions (EMT) in mesothelial cells, which results in cell retraction and exposure of submesothelial extracellular matrix. Since endometrial tissue preferentially adheres to the extracellular matrix, adhesion of endometrial tissue to the peritoneum is facilitated. The EMT were shown to be associated with differential expression and phosphorylation of mesothelial proteins. Using radiolabeling and proteomics we detected changes in protein expression and phosphorylation that occur in mesothelial cells during the EMT process. The identity of 73 proteins, which were obtained from 324 analyzed spots, was confirmed. The expression of 35 proteins involved in organization of the cytoskeleton, signal transduction, regulation of the redox state, and production of ATP, was altered during the EMT process. Four of the identified proteins were differentially phosphorylated: annexin-1, an actin-binding protein and a substrate for receptor tyrosine kinases; tropomyosin-alpha, a regulator of actin filament stability and cell shape; elongation factor 1 delta; ATP synthase beta-chain. In conclusion, factors from menstrual effluent induce specific changes in the expression and phosphorylation status of structural, regulatory and metabolic proteins relevant to the complex process of EMT in mesothelial cells.
Keywords:Actin  Annexin-1  Morphology  Tyrosine kinase
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号