首页 | 本学科首页   官方微博 | 高级检索  
     


The Human Ankle-Foot Complex as a Multi-Configurable Mechanism during the Stance Phase of Walking
Authors:Amaraporn Boonpratatong
Affiliation:(School of Mechanical, Aerospace and Civil Engineering, University of Manchester,Manchester, M60 1QD, UK) ;
Abstract:The objective of this study is to investigate the biomechanical functions of the human ankle-foot complex during the stancephase of walking. The three-dimensional (3D) gait measurement was conducted by using a 3D infrared multi-camera system anda force plate array to record the Ground Reaction Forces (GRF) and segmental motions simultaneously. The ankle-foot complexwas modelled as a four-segment system, connected by three joints: talocrural joint, sub-talar joint and metatarsophalangeal joint.The subject-specific joint orientations and locations were determined using a functional joint method based on the particleswarm optimisation algorithm. The GRF moment arms and joint moments acting around the talocrural and sub-talar joints werecalculated over the entire stance phase. The estimated talocrural and sub-talar joint locations show noticeable obliquity. Thekinematic and kinetic results strongly suggest that the human ankle-foot complex works as a mechanical mechanism with twodifferent configurations in stance phase of walking. These lead to a significant decrease in the GRF moment arms therebyincreasing the effective mechanical advantages of the ankle plantarflexor muscles. This reconfigurable mechanism enhancesmuscle effectiveness during locomotion by modulating the gear ratio of the ankle plantarflexor muscles in stance. This studyalso reveals many factors may contribute to the locomotor function of the human ankle-foot complex, which include not only itsre-configurable structure, but also its obliquely arranged joints, the characteristic heel-to-toe Centre of Pressure (CoP) motionand also the medially acting GRF pattern. Although the human ankle-foot structure is immensely complex, it seems that itsconfiguration and each constitutive component are well tuned to maximise locomotor efficiency and also to minimise risk ofinjury. This result would advance our understanding of the locomotor function of the ankle-foot complex, and also the intrinsicdesign of the ankle-foot musculoskeletal structure. Moreover, this may also provide implications for the design of bionicprosthetic devices and the development of humanoid robots.
Keywords:ankle  foot  talocrural joint  sub-talar joint  metatarsophalangeal joint  ground reaction force  moment arm  reconfigurable mechanism
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号