Nucleotide sequence of the beta-D-phosphogalactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other gram-positive organisms |
| |
Authors: | E V Porter B M Chassy |
| |
Affiliation: | Laboratory of Microbiology and Immunology, National Institute of Dental Research, Bethesda, MD 20892. |
| |
Abstract: | Lactose metabolism in Lactobacillus casei occurs via phosphoenolpyruvate-dependent phosphotransferase uptake of lactose and subsequent cleavage of lactose-6-phosphate by beta-D-phosphogalactoside galactohydrolase (P-beta Gal). The genes for lactose uptake and P-beta Gal have been shown to be plasmid-associated in L. casei 64H [Chassy et al., Curr. Microbiol. 1 (1978) 141-144]. The cloned P-beta Gal-coding gene (pbg) previously described [Lee et al., J. Bacteriol. 152 (1982) 1138-1146] was subcloned on a 2.9-kb KpnI-Bg/II fragment isolated from pLZ605. Sequence analysis of this fragment revealed an open reading frame of 1422 bp capable of coding for a protein product containing 474 amino acids and having an Mr of 53,989. The L. casei protein showed a high degree of homology to the proteins whose sequence was deduced from the nucleotide sequence of the pbg genes of Staphylococcus aureus and Streptococcus lactis. Because of the significant homologies observed, as reflected in amino acid content as well as predicted structural characteristics of the three proteins, we suggest a common origin for the P-beta Gals of these three organisms. |
| |
Keywords: | |
|
|