首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thyrotropin-releasing hormone regulates the number of its own receptors in the GH3 strain of pituitary cells in culture.
Authors:P M Hinkle  A H Tashjian
Abstract:Thyrotropin-releasing hormone (TRH), a hypothalamic tripeptide, binds rapidly and reversibly to specific membrane receptors on GH3 cells, a clonal strain of rat pituitary cells grown in culture. GH3 cells were incubated for 1-72 hr with unlabeled TRH, washed, and then incubated for 1 hr with 3H]TRH. Under these conditions 80% of any bound, unlabeled TRH exchanges with 3H]TRH in the medium, and the amount of radioactivity bound to the cells gives a measure of the number of TRH receptors. In GH3 cells, the number of available TRH receptors decreased from 92% of control after 1 hr to 35% after 48 or 72 hr of incubation with unlabeled TRH. Binding of 3H]TRH to both intact control and TRH-treated cells was half-maximal at 8 nM 3H]TRH, but the maximum amount of 3H]TRH bound was decreased by 75% in cells previously incubated for 48 hr with unlabeled TRH. Equilibrium binding studies were performed using membrane fractions prepared from control cells and cells previously exposed to TRH for various periods. The dissociation constant of the TRH-receptor complex was the same in all cases, but the maximum amount of TRH bound decreased progressively in membrane fractions from cells incubated with TRH for 1-51 hr. TRH receptors were not found in cytoplasmic fractions of control or TRH-treated cells. The loss of TRH receptors was reversible within 4 days. In the continued presence of the tripeptide the number of receptors remained low for 12 days. After incubation for 2 days with different concentrations of TRH, the number of receptors was decreased to 33% of control at 100-300 nM TRH, and half of this decrease occurred at about 1 nM TRH; half-maximal biological responses occur at 2 nM TRH. The biologically active Ntau-methylhistidyl derivative of TRH also effected a loss of receptors, while three inactive analogs of TRH did not cause reductions in the number of TRH receptors. In cultures incubated for 40 hr with cycloheximide, protein synthesis was inhibited by 85%, but the number of TRH receptors was 76% of control suggesting that the receptor has a long half-life. When GH3 cells were incubated with cycloheximide plus TRH, the number of TRH receptors decreased by only 23% as compared to a decrease of 73% in cells incubated with TRH alone, suggesting that receptor loss is partially dependent on active protein synthesis. We conclude that in GH3 cells TRH regulates the number of its own receptors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号