首页 | 本学科首页   官方微博 | 高级检索  
     


Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora
Authors:Mateos-Naranjo E  Redondo-Gómez S  Cambrollé J  Luque T  Figueroa M E
Affiliation:Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Avenida Reina de Mercedes s/n, Seville, Spain. emana@us.es
Abstract:Spartina densiflora Brongn. is found in coastal marshes of southwest Spain, growing over sediments containing 100-4800 ppm Zn. A glasshouse experiment was designed to investigate the effect of Zn from 0 to 100 mmol.l(-1) on the growth and photosynthetic apparatus of S. densiflora, by measuring relative growth rate, leaf elongation rate, number of tillers, height of tillers, chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined total ash, Zn, calcium, magnesium and phosphorus concentrations, and the C/N ratio. At 100 mmol.l(-1) Zn, S. densiflora showed a 48% biomass reduction after 1 month of treatment. Long-term effects of Zn on growth of S. densiflora consisted mainly of variations in net photosynthesis. Modification of the Zn/Mg ratio was linked to a strong decrease in RuBP carboxylase (Zn was favoured in local competition with Mg, so that the affinity of RuBisCO for CO(2) decreased), oxygenase activity of RuBisCO acting as a substitute for the photosynthetic function. Also, Zn had a marked overall effect on the photochemical (PSII) apparatus and the synthesis of photosynthetic pigments. However, the results indicate that S. densiflora is capable of tolerating very high and continued exposure to Zn, as this species lowers the translocation of Zn from the nutrient solution to roots and controls Zn ion transport into leaves. Therefore, S. densiflora could be useful in the phytostabilization of soils.
Keywords:Chlorophyll fluorescence  growth rate  invader  photosynthetic pigments. photosystem II  stomatal conductance  zinc
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号