首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. Active/inactive slow pH-dependent transitions of the inhibitor protein
Authors:M V Panchenko  A D Vinogradov
Abstract:The rate of mitochondrial ATPase inactivation by the naturally occurring inhibitor protein in the presence of saturating ATP and Mg2+ at pH 8.0 depends hyperbolically on the amount of inhibitor added; the upper limit of an apparent first-order constant for the inactivation process is 1.0(-1) at 25 degrees C. A dramatic difference in the inactivation rate is observed when the protein inhibitor is added to the same assay system from either acidic (pH 4.8) or alkaline (pH 8.2) solutions. The slow reversible transition of the inhibitor from its rapidly reacting 'acidic' form to the slow reacting 'alkaline' form occurs when the solution of the protein inhibitor is subjected to a pH-jump from 4.8 to 8.2 (t1/2 approximately 30s at 25 degrees C). The pH-profile of the inhibitor active/inactive equilibrium suggests that a group with pKa approximately 6.5 is involved in the transition. Treatment of the inhibitor protein with a histidine-specific reagent (e.g. diethyl pyrocarbonate) abolishes its inactivating effect on the ATPase activity. It is concluded that the protonation/deprotonation of the inhibitor protein followed by its slow conformational changes is the rate-limiting step in the inhibitor-ATP synthetase interaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号