首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Recycling of the hepatic asialoglycoprotein receptor in isolated rat hepatocytes. Receptor-ligand complexes in an intracellular slowly dissociating pool return to the cell surface prior to dissociation
Authors:P H Weigel  J A Oka
Abstract:We recently reported that the dissociation of internalized receptor-125I-asialo-orosomucoid (ASOR) complexes by isolated hepatocytes is a biphasic process; most complexes dissociate rapidly but 25-50% dissociate slowly (Oka, J. A., and Weigel, P. H. J. Biol. Chem. 258, 10253-10262). Cells were allowed to endocytose a pulse of surface-bound 125I-ASOR, and were washed and then incubated at 37 degrees C in the presence or absence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). Without EGTA, very little intact ASOR appeared in the medium. With EGTA present, a large amount of intracellular ligand appeared undegraded in the medium in a time-dependent manner. N-Acetylgalactosamine, but not ASOR, in the medium also caused release of intact 125I-ASOR. Within 15 min, more than 50% and by completion at least 80% of the internalized ligand in the slow dissociation compartment was released into the medium. If cells containing internalized ligand were incubated at 37 degrees C for increasing times before the addition of EGTA, then progressively less ligand accumulated in the medium. Experiments at 18 degrees C, a temperature at which neither degradation nor slow dissociation occurred, demonstrated that in the presence of EGTA the intracellular free 125I-ASOR pool did not change. The amount of receptor-bound ligand in the slowly dissociating pool decreased and the amount of intact ligand in the medium increased by essentially equal amounts. The temperature dependence for the return of internal 125I-ASOR to the cell surface was similar to that for endocytosis, with a cut-off temperature of about 12 degrees C. We conclude that a normal part of the endocytic process involves the return of receptor-ligand complexes to the cell surface from an internal slowly dissociating pool. This might reflect either an obligatory step or a reversible statistically random step in the endocytic/recycling pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号