首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Systemic plant signal triggers genome instability
Authors:Filkowski Jody  Yeoman Allan  Kovalchuk Olga  Kovalchuk Igor
Institution:Department of Biological Sciences, University of Lethbridge, Lethbridge, Alta, Canada T1K 3M4.
Abstract:Previously, we have shown that infection of tobacco plants with a viral pathogen triggers local and systemic induction of homologous recombination (HR). Here, we have tested the hypothesis of whether free radicals are potentially involved in the induction of the systemic effect. We report a significant induction of HR in tobacco plants treated with radical-generating agents, UVC or rose Bengal (RB). Importantly, the recombination increase was observed in local (treated) as well as systemic (non-treated) tissue. The systemic increase in recombination implies the existence of a signal that is transmitted to non-treated tissue. Several sets of grafting experiments proved the generation of said signal by both RB and UVC exposure. A statistically significant increase in HR was observed in tissue that received a systemic signal via a grafted leaf. Similar data were obtained from transgenic plants naphthalene degrading salicylate 1-hydroxylase (NahG) unable to accumulate salicylic acid (SA). Interestingly, pre-treatment of plants with the radical-scavenging compound N-acetyl-l-cysteine (NAC) led to a significantly lower recombination increase upon grafting after treatment with UVC and RB. Moreover, leaves taken for grafting from NAC-pre-treated plants exhibited a lower level of oxidized organic compounds. Our data suggest the involvement of free radical production in either generation or maintenance of the recombination signal. We discuss potential mechanisms for generation of the signal and possible adaptive advantages of enhanced genomic flexibility following exposure to DNA-damaging agents.
Keywords:homologous recombination  plants  abiotic stress  systemic recombination signal
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号