首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of citrate, maltolate and fluoride on the gastrointestinal absorption of aluminum at a drinking water-relevant concentration: A 26Al and 14C study
Authors:Zhou Yuzhao  Harris Wesley R  Yokel Robert A
Affiliation:Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, United States.
Abstract:The objectives were to test the null hypotheses that (1) citrate, maltolate, and fluoride do not significantly influence oral Al bioavailability, C(max) or T(max) at an Al dose relevant to drinking water exposure; and (2) Al citrate and maltolate are absorbed intact from the gastrointestinal tract. Male Fisher rats were given 1ml of solution intra-gastrically containing 1 nCi (26)Al (65nmol total Al) as the Al(3+) ion, or as complexes with (14)C-citrate, (14)C-maltolate or fluoride, during concurrent (27)Al iv infusion. Blood was repeatedly collected for serum (26)Al, total Al and (14)C quantification. Absorption parameters were estimated using WinNonlin. Al bioavailability, C(max) and T(max) from the ion, citrate, maltolate, and fluoride were 0.29+/-0.11%, 0.61+/-0.31%, 0.50+/-0.25%, and 0.35+/-0.10%; 659+/-195, 1073+/-250, 881+/-356, and 880+/-295fg/ml; and 1.2+/-0.9, 1.0+/-1.1, 1.3+/-1.0, and 1.0+/-0.9h (X+/-SD) respectively. Serum (14)C was approximately 100 times higher than (26)Al. The results suggest a non-significant enhancement of oral Al bioavailability by citrate and maltolate, some Al complex dissociation in the GI tract, and less absorption of Al than citrate or maltolate. The presence of citrate, maltolate and fluoride, at a similar molar concentration to Al, would not be expected to greatly influence Al absorption from drinking water.
Keywords:Accelerator mass spectrometry   Aluminum bioavailability   26Al   14C   Chemical species
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号