首页 | 本学科首页   官方微博 | 高级检索  
   检索      


EPID in vivo dosimetry in RapidArc technique
Authors:Krzysztof Slosarek  Marta Szlag  Barbara Bekman  Aleksandra Grzadziel
Institution:Centre of Oncology – Maria Sklodowska Curie, Memorial Institute, Branch Gliwice, Radiotherapy and Brachytherapy Planning Department, Poland
Abstract:

Aim

The aim of the study was to estimate the dose at the reference point applying an aSi-EPID device in the course of patient treatment.

Materials and methods

The method assumes direct proportionality between EPID signal and dose delivered to the patient reference point during the treatment session. The procedure consists of treatment plan calculation for the actual patient in the arc technique. The plan was realized with an elliptic water-equivalent phantom. An ionization chamber inside the phantom measured the dose delivered to the reference point. Simultaneously, the EPID matrix measured the CU distribution. EPID signal was also registered during patient irradiation with the same treatment plan. The formula for in vivo dose calculation was based on the CU(g) function, EPID signal registered during therapy and the relation between the dose and EPID signal level measured for the phantom. In vivo dose was compared with dose planned with the treatment planning system.Irradiation was performed with a Clinac accelerator by Varian Medical Systems in the RapidArc technique. The Clinac was equipped with an EPID matrix (electronic portal image device) of aSi-1000. Treatment plans were calculated with the Eclipse/Helios system. The phantom was a Scanditronix/Wellhöfer Slab phantom, and the ionization chamber was a 0.6 ccm PTW chamber.

Results

In vivo dose calculations were performed for five patients. Planned dose at the reference point was 2 Gy for each treatment plan. Mean in vivo dose was in the range of 1.96–2.09.

Conclusions

Our method was shown to be appropriate for in vivo dose evaluation in the RapidArc technique.
Keywords:Arc technique  Portal dosimetry  IMRT  Verification  Electronic portal imaging device
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号