INrf2 (Keap1) targets Bcl-2 degradation and controls cellular apoptosis |
| |
Authors: | S K Niture A K Jaiswal |
| |
Affiliation: | 1.Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD, USA |
| |
Abstract: | Cytosolic inhibitor of Nrf2 (INrf2) is an adaptor protein that mediates ubiquitination/degradation of NF-E2-related factor 2 (Nrf2), a master regulator of cytoprotective gene expression. In this paper, we demonstrate that INrf2 degrades endogenous antiapoptotic B-cell CLL/lymphoma 2 (Bcl-2) protein and controls cellular apoptosis. The DGR domain of INrf2 interacts with the BH2 domain of Bcl-2 and facilitates INrf2:Cul3–Rbx1-mediated ubiquitination of Bcl-2 by the conjugation of ubiquitin molecules to lysine17 of Bcl-2. Further studies showed that INrf2 enhanced etoposide-mediated accumulation of Bax, increased release of cytochrome c from mitochondria, activated caspase-3/7, and enhanced DNA fragmentation and apoptosis. Antioxidants antagonized Bcl-2:INrf2 interaction, led to the release and stabilization of Bcl-2, increased Bcl-2:Bax heterodimers and reduced apoptosis. Moreover, dysfunctional/mutant INrf2 in human lung cancer cells failed to degrade Bcl-2, resulting in decreased etoposide and UV/γ radiation-mediated DNA fragmentation. These data provide the first evidence of INrf2 control of Bcl-2 and apoptotic cell death, with implications in antioxidant protection, survival of cancer cells containing dysfunctional INrf2, and drug resistance. |
| |
Keywords: | Nrf2 INrf2 (Keap1) Bcl-2 Anti-apoptotic Apoptosis |
|
|