首页 | 本学科首页   官方微博 | 高级检索  
     


Atmospheric methane uptake by tropical montane forest soils and the contribution of organic layers
Authors:Katrin Wolf  Heiner Flessa  Edzo Veldkamp
Affiliation:1. Büsgen Institute-Soil Science of Tropical and Subtropical Ecosystems, Georg-August University of G?ttingen, Büsgenweg 2, 37077, G?ttingen, Germany
2. Johann Heinrich von Thünen-Institut, Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Agricultural Climate Research, Braunschweig, Germany
Abstract:Microbial oxidation in aerobic soils is the primary biotic sink for atmospheric methane (CH4), a powerful greenhouse gas. Although tropical forest soils are estimated to globally account for about 28% of annual soil CH4 consumption (6.2 Tg CH4 year?1), limited data are available on CH4 exchange from tropical montane forests. We present the results of an extensive study on CH4 exchange from tropical montane forest soils along an elevation gradient (1,000, 2,000, 3,000 m) at different topographic positions (lower slope, mid-slope, ridge position) in southern Ecuador. All soils were net atmospheric CH4 sinks, with decreasing annual uptake rates from 5.9 kg CH4–C ha?1 year?1 at 1,000 m to 0.6 kg CH4–C ha?1 year?1 at 3,000 m. Topography had no effect on soil atmospheric CH4 uptake. We detected some unexpected factors controlling net methane fluxes: positive correlations between CH4 uptake rates, mineral nitrogen content of the mineral soil and with CO2 emissions indicated that the largest CH4 uptake corresponded with favorable conditions for microbial activity. Furthermore, we found indications that CH4 uptake was N limited instead of inhibited by NH4 +. Finally, we showed that in contrast to temperate regions, substantial high affinity methane oxidation occurred in the thick organic layers which can influence the CH4 budget of these tropical montane forest soils. Inclusion of elevation as a co-variable will improve regional estimates of methane exchange in these tropical montane forests.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号