首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polymorphic ventricular tachycardia and abnormal Ca2+ handling in very-long-chain acyl-CoA dehydrogenase null mice
Authors:Werdich Andreas A  Baudenbacher Franz  Dzhura Igor  Jeyakumar Loice H  Kannankeril Prince J  Fleischer Sidney  LeGrone Alison  Milatovic Dejan  Aschner Michael  Strauss Arnold W  Anderson Mark E  Exil Vernat J
Institution:Division of Cardiology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232-0001, USA.
Abstract:Patients with mutations in the mitochondrial very-long-chain acyl-CoA dehydrogenase (VLCAD) gene are at risk for cardiomyopathy, myocardial dysfunction, ventricular tachycardia (VT), and sudden cardiac death. The mechanism is not known. Here we report a novel mechanism of VT in mice lacking VLCAD (VLCAD(-/-)). These mice exhibited polymorphic VT and increased incidence of VT after isoproterenol infusion. Polymorphic VT was induced in 10 out of 12 VLCAD(-/-) mice (83%) when isoproterenol was used. One out of 10 VLCAD(-/-) mice with polymorphic VT had VT with the typical bidirectional morphology. At the molecular level, VLCAD(-/-) cardiomyocytes showed increased levels of cardiac ryanodine receptor 2, phospholamban, and calsequestrin with increased (3)H]ryanodine binding in heart microsomes. At the single cardiomyocyte level, VLCAD(-/-) cardiomyocytes showed significant increase in diastolic indo 1 and fura 2 fluorescence, with increased Ca(2+) transient amplitude. These changes were associated with altered Ca(2+) dynamics, to include: faster sarcomere contraction, larger time derivative of the upstroke, and shorter time-to-minimum sarcomere length compared with VLCAD(+/+) control cells. The L-type Ca(2+) current characteristics were not different under voltage-clamp conditions in the two VLCAD genotypes. Sarcoplasmic reticulum Ca(2+) load measured as normalized integrated Na(+)/Ca(2+) exchange current after rapid caffeine application was increased by 48% in VLCAD(-/-) cells. We conclude that intracellular Ca(2+) handling represents a possible molecular mechanism of arrhythmias in mice and perhaps in VLCAD-deficient humans.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号