首页 | 本学科首页   官方微博 | 高级检索  
     


Limitation of plant water use by rhizosphere and xylem conductance: results from a model
Authors:J. S. Sperry,F. R. Adler,G. S. Campbell,&   J. P. Comstock
Affiliation:Department of Botany, Box 90338, Duke University, Durham, NC 27708, ,;Department of Biology, University of Utah, Salt Lake City, UT 84112, ,;Department of Crop and Soil Science, Washington State University, Pullman, WA 99164–6420, and ,;Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
Abstract:Hydraulic conductivity ( K ) in the soil and xylem declines as water potential ( Ψ ) declines. This results in a maximum rate of steady-state transpiration ( E crit) and corresponding minimum leaf Ψ ( Ψ crit) at which K has approached zero somewhere in the soil–leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area ( A R: A L), the loss of rhizosphere K limited E crit and Ψ crit. Above the threshold, loss of xylem K from cavitation was limiting. The A R: A L threshold ranged from > 40 for coarse soils and/or cavitation-resistant xylem to < 0·20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their A R: A L threshold. Corollary predictions are (1) within a soil type the A R: A L should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the A R: A L should increase and maximum cavitation resistance should decrease.
Keywords:drought responses    hydraulic conductance    rhizosphere conductance    root–shoot ratio    soil–root interface    water relations    water transport    xylem cavitation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号