首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of Insulin Secretion in Islets of Langerhans by Ca2+Channels
Authors:David?Mears  author-information"  >  author-information__contact u-icon-before"  >  mailto:dmears@usuhs.mil"   title="  dmears@usuhs.mil"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA
Abstract:Insulin secretion from β-cells of the pancreatic islets of Langerhans is triggered by Ca2+ influx through voltage-dependent Ca2+ channels. Electrophysiological and molecular studies indicate that β-cells express several subtypes of these channels. This review discusses their roles in regulating insulin secretion, focusing on recent studies using β-cells, exogenous expression systems, and Ca2+ channel knockout mice. These investigations reveal that L-type Ca2+ channels in the β-cell physically interact with the secretory apparatus by binding to synaptic proteins on the plasma membrane and insulin granule. As a result, Ca2+ influx through L-type channels efficiently and rapidly stimulates release of a pool of insulin granules in close contact with the channels. Thus, L-type Ca2+ channel activity is preferentially coupled to exocytosis in the β-cell, and plays a critical role in regulating the dynamics of insulin secretion. Non-L-type channels carry a significant portion of the total voltage-dependent Ca2+ current in β-cells and cell lines from some species, but nevertheless account for only a small fraction of insulin secretion. These channels may regulate exocytosis indirectly by affecting membrane potential or second messenger signaling pathways. Finally, voltage-independent Ca2+ entry pathways and their potential roles in β-cell function are discussed. The emerging picture is that Ca2+ channels regulate insulin secretion at multiple sites in the stimulus-secretion coupling pathway, with the specific role of each channel determined by its biophysical and structural properties.This revised version was published online in June 2005 with a corrected cover date.
Keywords:β  -cells  Exocytosis  Patch clamp  Glucose  SNARE  Diabetes mellitus
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号