Potential role for nonesterified fatty acids in beta-adrenoceptor-induced increases in brain tryptophan |
| |
Authors: | Lenard Natalie R Dunn Adrian J |
| |
Affiliation: | Department of Pharmacology and Therapeutics and School of Graduate Studies, Louisiana State University Health Sciences Center, 1501 Kings Highway Shreveport, LA 71130-3932, USA. nlenar@lsuhsu.edu |
| |
Abstract: | We tested the hypothesis that beta2- and beta3-adrenergic receptor-mediated increases in brain tryptophan are due to the liberation of fatty acids, which in turn displace tryptophan from its albumin-binding site and thus facilitate its entry into the brain. Male CD-1 mice were injected with subtype-selective beta-adrenergic agonists 1h before brain samples were collected for analysis of tryptophan content by HPLC with electrochemical detection, and blood samples were collected for analysis of total and free tryptophan and nonesterified fatty acid (NEFA) concentrations. The beta2-selective agonist, clenbuterol (0.1 mg/kg), increased concentrations of tryptophan in all brain regions studied and decreased plasma total tryptophan, but had no effect on plasma free tryptophan or NEFAs. The beta3-selective agonists, BRL 37344 (0.2 mg/kg) or CL 316243 (0.01 mg/kg), increased brain tryptophan, plasma NEFAs and free tryptophan. Pretreatment with nicotinic acid (500 mg/kg), an inhibitor of lipolysis, almost completely prevented the increase in plasma free tryptophan and NEFAs, and attenuated the increase in brain tryptophan induced by CL 316243. These results suggest that beta2- and beta3-adrenergic agonists increase brain tryptophan by a mechanism other than the liberation of NEFAs. Nonetheless, beta3-adrenergic agonists appear to increase brain tryptophan by a mechanism that may depend partially on elevations of plasma NEFAs. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|