CXCR3/CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of immunoangiostasis |
| |
Authors: | Pan Judong Burdick Marie D Belperio John A Xue Ying Ying Gerard Craig Sharma Sherven Dubinett Steven M Strieter Robert M |
| |
Affiliation: | Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. |
| |
Abstract: | Metastatic renal cell carcinoma (RCC) responds poorly to chemo- or radiation therapy but appears to respond to systemic immunotherapy (i.e., IL-2 and/or IFN-alpha), albeit with only 5-10% durable response. The CXCR3/CXCR3 ligand biological axis plays an important role in mediating type 1 cytokine-dependent cell-mediated immunity, which could be beneficial for attenuating RCC if optimized. We found that systemic IL-2 induced the expression of CXCR3 on circulating mononuclear cells but impaired the CXCR3 ligand chemotactic gradient from plasma to tumor by increasing circulating CXCR3 ligand levels in a murine model of RCC. Moreover, the antitumor effect of systemic IL-2 was CXCR3-dependent, as IL-2 failed to inhibit tumor growth and angiogenesis in CXCR3-/- mice. We hypothesized that the immunotherapeutic effect of the CXCR3/CXCR3 ligand biological axis could be optimized by first priming with systemic IL-2 to induce CXCR3 expression on circulating mononuclear cells followed by enhancing the intratumor CXCR3 ligand levels to establish optimal CXCR3-dependent chemotactic gradient. We found that combined systemic IL-2 with an intratumor CXCR3 ligand (CXCL9) lead to significantly greater reduction in tumor growth and angiogenesis, increased tumor necrosis, and increased intratumor infiltration of CXCR3+ mononuclear cells, as compared with either IL-2 or CXCL9 alone. The enhanced antitumor effect of the combined strategy was associated with a more optimized CXCR3-dependent chemotactic gradient and increased tumor-specific immune response. These data suggest that the combined strategy of systemic IL-2 with intratumor CXCR3 ligand is more efficacious than either strategy alone for reducing tumor-associated angiogenesis and augmenting tumor-associated immunity, the concept of immunoangiostasis. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|