首页 | 本学科首页   官方微博 | 高级检索  
     

生物正交化学在活体标记及药物传递中的研究进展
引用本文:韩雨彤,潘宏,罗英梅,马爱青,邢婕华,陈泽,郑明彬,李宝红,蔡林涛. 生物正交化学在活体标记及药物传递中的研究进展[J]. 生物化学与生物物理进展, 2020, 47(3): 179-187
作者姓名:韩雨彤  潘宏  罗英梅  马爱青  邢婕华  陈泽  郑明彬  李宝红  蔡林涛
作者单位:1)广东医科大学药学院,东莞 523808;3)深圳市罗湖区人民医院药学部,深圳 518001,2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055,1)广东医科大学药学院,东莞 523808;2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055,1)广东医科大学药学院,东莞 523808;2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055,1)广东医科大学药学院,东莞 523808;2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055,2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055,1)广东医科大学药学院,东莞 523808;2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055;4)珠海先进技术研究院有限公司,珠海 519000,1)广东医科大学药学院,东莞 523808,2)中国科学院深圳先进技术研究院,中国科学院健康信息学重点实验室, 广东省纳米医药重点实验室,深圳518055;4)珠海先进技术研究院有限公司,珠海 519000
基金项目:国家自然科学基金(21701033,81971749,81601552),深圳市科技计划(自由探索)(JCY20170818163739458,JCY20170306160217433),广东省自然科学基金(2019A1515011524), 广东医科大学校级学科学术带头人培育基金(4SG19003Gh), “高校教育人才”组团式帮扶专项基金(4SG19057G,4SG19045G), 广东医科大学博士启动基金(B2017016)和珠海市创新创业团队项目(ZH01110405180056PWC)资助.
摘    要:生物正交化学反应是一类可以在生理条件下发生的化学反应,具有简单、高效、高特异性的特点,在生物医学的研究中被广泛应用.基于生物体天然生命过程的代谢工程,可对生物分子进行无损、高效的生物代谢修饰,是一种理想的生物修饰技术.通过生物代谢途径可有效地将各种化学报告基团引入靶标物的生物分子中,有利于携带配对基团的标记物与其发生生物正交反应,从而在活体系统中实现生物分子的标记示踪和药物递送.这种基于代谢工程与生物正交化学的标记策略因为具有两者之间的优势,在生物医学工程中的标记、成像示踪、诊断等领域展现出巨大的研究价值与应用潜力.本文介绍了生物正交和代谢工程的原理与生物医学研究进展,阐述了生物正交化学在分子成像和药物传递等方面的研究与应用.

关 键 词:生物正交化学  代谢工程  生物标记  活体示踪  药物传递
收稿时间:2019-11-28
修稿时间:2020-01-18

Advances in Bioorthogonal Chemistry for in vivo Labeling and Drug Delivery
HAN Yu-Tong,PAN Hong,LUO Ying-Mei,MA Ai-Qing,XING Jie-Hu,CHEN Ze,ZHENG Ming-Bin,LI Bao-Hong and CAI Lin-Tao. Advances in Bioorthogonal Chemistry for in vivo Labeling and Drug Delivery[J]. Progress In Biochemistry and Biophysics, 2020, 47(3): 179-187
Authors:HAN Yu-Tong  PAN Hong  LUO Ying-Mei  MA Ai-Qing  XING Jie-Hu  CHEN Ze  ZHENG Ming-Bin  LI Bao-Hong  CAI Lin-Tao
Affiliation:1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; 3)Department of Pharmacy, Shenzhen Luohu People''s Hospital, Shenzhen 518001, China,2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; 2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; 2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; 2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China,1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; 2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 4)Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519000, China,1)School of Pharmacy, Guangdong Medical University, Dongguan 523808, China,2)CAS Key of Laboratory of Health Informatics, Guangdong Key Laboratory of Nanomedicine, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; 4)Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Zhuhai 519000, China
Abstract:Bioorthogonal chemistry reaction is a kind of chemical reaction that can occur under physiological conditions, which has been widely used in biomedical research field owing to its high efficiency, specificity and simplicity. Metabolic engineering based on metabolic biosynthesis pathway is a reliable modification technique, achieving the non-destructive and efficient labeling of living molecules. The various chemical reporter groups could be effectively introduced into target biomolecules via biological metabolic process, which allowing the targets were labeled with complementary probes through bioorthogonal reaction for molecular labeling and drug delivery in living systems. Combined the advantages of metabolic engineering and bioorthogonal chemistry, this labeling strategy has great application potential and research value in labeling, trace imaging and diagnosis in the fields of biomedical engineering. Herein we introduced the theory and research progress of bioorthogonal chemistry and metabolic engineering in biomedical fields, and also specially analyzed the application of bioorthogonal chemistry in molecular imaging and drug delivery.
Keywords:bioorthogonal chemistry  metabolic engineering  molecular labeling  in vivo tracking  drug delivery
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《生物化学与生物物理进展》浏览原始摘要信息
点击此处可从《生物化学与生物物理进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号