首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization
Authors:Yongming Zhang  Xia Sun  Lujun Chen  Bruce E Rittmann
Institution:(1) Department of Environmental Engineering, College of Life and Environmental Science, Shanghai Normal University, Shanghai, 200234, People’s Republic of China;(2) School of Environment, Tsinghua University, Beijing, 100084, People’s Republic of China;(3) Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701, USA
Abstract:An integrated photocatalytic-biological reactor (IPBR) was used for accelerated degradation and mineralization of 2,4,6-trichlorophenol (TCP) through simultaneous, intimate coupling of photocatalysis and biodegradation in one reactor. Intimate coupling was realized by circulating the IPBR’s liquid contents between a TiO2 film on mat glass illuminated by UV light and honeycomb ceramics as biofilm carriers. Three protocols—photocatalysis alone (P), biodegradation alone (B), and integrated photocatalysis and biodegradation (photobiodegradation, P&B)—were used for degradation of different initial TCP concentrations. Intimately coupled P&B also was compared with sequential P and B. TCP removal by intimately coupled P&B was faster than that by P and B alone or sequentially coupled P and B. Because photocatalysis relieved TCP inhibition to biodegradation by decreasing its concentration, TCP biodegradation could become more important over the full batch P&B experiments. When phenol, an easy biodegradable compounds, was added to TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand. Cl was only partially released during P experiments (24%), and this corresponded to its poor mineralization in P experiments (32%). Thus, intimately coupled P&B in the IPBR made it possible obtain the best features of each: rapid photocatalytic transformation in parallel with mineralization of photocatalytic products.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号