首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Endothelial Cell Ion Channels in the Resistance Artery Function
Authors:Garland  C. J.
Affiliation:1. University of Bath, Great Britain
Abstract:Endothelium-dependent hyperpolarizing factor (EDHF) underlies nitric oxide and prostacyclin-independent arterial relaxation. As the influence of EDHF increases with decreasing artery size, it plays an important role in vascular regulation. Initially suggested to represent a diffusible factor, EDHF is now thought to represent a variable input in different arteries from a factor(s) and the spread of hyperpolarizing current from the endothelium to the smooth muscle. Key to unravelling this pathway has been the demonstration that hyperpolarization within the endothelium can be blocked using a combination of the KCa channel blockers, apamin and charibdotoxin. As a consequence, the relaxation of vascular smooth muscle, which represents the end point of the EDHF pathway, is blocked. This review discusses the evidence that a differential distribution of ion channels between the smooth muscle and endothelial cells underlies the EDHF pathway. Also, that a diffusible factor, which may well be K ions released by the endothelium, acts alongside the spread of hyperpolarization through myoendothelial gap junctions to explain EDHF-evoked smooth muscle relaxation. While the relative importance of each of these two components can vary between arteries, together they can explain the EDHF phenomenon.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号