首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of Extracellular γ-Aminobutyric Acid in the Ventral Pallidum Using In Vivo Microdialysis
Authors:Andrea J Bourdelais  Peter W Kalivas
Institution:Department of VCAPP, Washington State University, Pullman 99164-6520.
Abstract:Intracranial microdialysis was used to investigate the origin of extracellular gamma-aminobutyric acid (GABA) in the ventral pallidum. Changes in basal GABA levels in response to membrane depolarizers, ion-channel blockers, and receptor agonists were determined. Antagonism of Ca2+ fluxes with high Mg2+ in a Ca(2+)-free perfusion buffer decreased GABA levels by up to 30%. Inhibition of voltage-dependent Na+ channels by the addition of tetrodotoxin also significantly decreased basal extracellular GABA concentrations by up to 45%, and blockade of Ca2+ and Na+ channels with verapamil reduced extracellular GABA by as much as 30%. The addition of either the GABAA agonist, muscimol, or the GABAB agonist, baclofen, produced a 40% reduction in extracellular GABA. GABA release was stimulated by high K+ and the addition of veratridine to increase Na+ influx. High K(+)-induced release was predominantly Ca(2+)-dependent, whereas the effect of veratridine was potentiated in the absence of extracellular Ca2+. Both high K(+)- and veratridine-induced elevations in extracellular GABA were inhibited by baclofen, whereas only veratridine-induced release was antagonized by muscimol. These results demonstrate that at least 50% of basal extracellular GABA in the ventral pallidum is derived from Ca(2+)- or Na(+)-dependent mechanisms. They also suggest that Na(+)-dependent release of GABA via reversal of the uptake carrier can be shown in vivo.
Keywords:γ-Aminobutyric acid  Ventral pallidum  Microdialysis-Baclofen-Muscimol
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号