首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The modulation of hepatic adenosine triphosphate and inflammation by eicosapentaenoic acid during severe fibrotic progression in the SHRSP5/Dmcr rat model
Authors:Jia Xiaofang  Naito Hisao  Yetti Husna  Tamada Hazuki  Kitamori Kazuya  Hayashi Yumi  Yamagishi Nozomi  Wang Dong  Yanagiba Yukie  Ito Yuki  Wang Juncai  Tanaka Naoki  Ikeda Katsumi  Yamori Yukio  Nakajima Tamie
Institution:Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Abstract:AimsEicosapentaenoic acid (EPA) can ameliorate certain liver lesions involved in non-alcoholic steatohepatitis (NASH). A previous study has found that stroke-prone spontaneously hypertensive 5/Dmcr (SHRSP5/Dmcr) rats fed a high fat-cholesterol (HFC) diet developed fibrotic steatohepatitis with histological similarities to NASH. This study evaluated the potential effects and mechanisms of action of EPA supplementation using this rodent model.Main methodsMale rats were randomly assigned to groups that were fed with either the stroke-prone (SP) diet or HFC diet with or without EPA for 2, 8 and 14 weeks, respectively. The liver histopathology, biochemical features, mRNA and protein levels, and nuclear factor-κB (NF-κB) DNA binding activity were determined.Key findingsThe SP diet-fed rats presented normal livers. Conversely, the HFC diet-fed rats developed microvesicular/macrovesicular steatosis, inflammation, ballooning degeneration and severe fibrosis. At 2 weeks, the administration of EPA inhibited hepatic inflammatory recruitment by blocking the phosphorylation of inhibitor of κB-α (IκBα), which antagonizes the NF-κB activation pathway. The dietary supplementation of EPA for 8 weeks ameliorated hepatic triglyceride accumulation and macrovesicular steatosis by inhibiting the HFC diet-induced decrease in the protein levels of enzymes involved in fatty acid β-oxidation including carnitine palmitoyltransferase 1, very long chain acyl-CoA dehydrogenase and peroxisomal bifunctional protein. Although the administration of EPA elicited no histologically detectable effects on severe fibrosis at 14 weeks, it restored an HFC diet-induced decline in hepatic adenosine triphosphate (ATP) levels and suppressed ballooning degeneration, suggesting that EPA may inhibit HFC diet-induced ATP loss and cell death.SignificanceInitial amelioration of the inflammation and steatosis in the rats after EPA supplementation indicates a possibility to treat steatohepatitis. Additionally, this study provides new insights into the roles of EPA in hepatic ATP depletion and subsequent hepatocellular injury during severe fibrosis.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号