首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A kinetic study of analyte-receptor binding and dissociation, and dissociation alone, for biosensor applications: a fractal analysis
Authors:Sadana A
Institution:Chemical Engineering Department, University of Mississippi, University, MS 38677-1848, USA.
Abstract:A fractal analysis is presented for (a) analyte-receptor binding and dissociation kinetics and (b) dissociation kinetics alone for biosensor applications. Emphasis is placed on dissociation kinetics. Data taken from the literature may be modeled, in the case of binding, using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis represents a change in the binding mechanism as the reaction progresses on the surface. A single-fractal analysis is adequate to model the dissociation kinetics in the examples presented. Predictive relationships developed for the dissociation rate coefficient(s) as a function of the analyte concentration are of particular value since they provide a means by which the dissociation rate coefficients may be manipulated. Relationships are also presented for the binding and dissociation rate coefficients as a function of their corresponding fractal dimension, D(f), or the degree of heterogeneity that exists on the surface. When analyte-receptor binding or dissociation is involved, an increase in the heterogeneity on the surface (increase in D(f)) leads to an increase in the binding and in the dissociation rate coefficient.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号