首页 | 本学科首页   官方微博 | 高级检索  
     


Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice
Authors:Jessica A. Manuel  Barbara Gawronska-Kozak  
Affiliation:Regenerative Biology Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
Abstract:Cutaneous wound healing is associated with migratory and remodeling events that require the action of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). Differences in their expressions were observed during scar-forming and scar-free skin wound healing. We previously found that athymic nude mice are exceptional among mature mammals in their ability to heal injured skin scarlessly. The present study was undertaken to determine whether the modulation of MMP-2 and MMP-9 expression during scarless healing in nude mice was different from scar-forming animals. Full thickness skin wounds were made into the back of nude, wild-type controls (C57BL/6J), immunodeficient SCID and Rag, thymectomized neonates and adults, and cyclosporin A treated mice. Post-injured skin tissues were harvested at Day 7 and 24 after injury. Quantitative RT-PCR, Western blot, gelatin zymography and immunohistochemical assays were performed. Our results show that MMP-2 protein was high but similarly expressed in all post-injured animals on Day 7 after injury. Late phase (Day 24) of wound repair was characterized by a decrease in mRNA and protein expression and a decrease in gelatinolytic activity of MMP-2 in all post-injured samples. On the contrary, high (p < 0.001) levels of mRNA expression, prominent pro-and active forms of MMP-9 and cells immunopositive for MMP-9 were present exclusively in the post-injured tissues from nude mice on Day 24 after wounding. This data suggest that MMP-9 expression in the remodeling phase of wound healing in nude mice could be a major component of their ability for scar-free healing.
Keywords:Matrix metalloproteinases   Wound healing   Regeneration   MMP-9   Nude mice
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号