首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The mitochondrial genome of Strongyloides stercoralis (Nematoda) - idiosyncratic gene order and evolutionary implications
Authors:Hu Min  Chilton Neil B  Gasser Robin B
Institution:Department of Veterinary Science, The University of Melbourne, 250 Princes Highway, Werribee, Victoria 3030, Australia.
Abstract:The complete mitochondrial genome sequence of the parasitic nematode Strongyloides stercoralis was determined, and its organisation and structure compared with other nematodes for which complete mitochondrial sequence data were available. The mitochondrial genome of S. stercoralis is 13,758 bp in size and contains 36 genes (all transcribed in the clockwise direction) but lacks the atp8 gene. This genome has a high T content (55.9%) and a low C content (8.3%). Corresponding to this T content, there are 16 (poly-T) tracts of >/=12 Ts distributed across the genome. In protein-coding genes, the T bias is greatest (76.4%) at the third codon position compared with the first and second codon positions. Also, the C content is higher at the first (9.3%) and second (13.4%) codon positions than at the third (2%) position. These nucleotide biases have a significant effect on predicted codon usage patterns and, hence, on amino acid compositions of the mitochondrial proteins. Interestingly, six of the 12 protein-coding genes are predicted to employ a unique initiation codon (TTT), which has not yet been reported for any other animal mitochondrial genome. The secondary structures predicted for the 22 transfer RNA (trn) genes and the two ribosomal RNA (rrn) genes are similar to those of other nematodes. In contrast, the gene arrangement in the mitochondrial genome of S. stercoralis is different from all other nematodes studied to date, revealing only a limited number of shared gene boundaries (atp6-nad2 and cox2-rrnL). Evolutionary analyses of mitochondrial nucleotide and amino acid sequence data sets for S. stercoralis and seven other nematodes demonstrate that the mitochondrial genome provides a rich source of phylogenetically informative characters. In conclusion, the S. stercoralis mitochondrial genome, with its unique gene order and characteristics, should provide a resource for comparative mitochondrial genomics and systematics studies of parasitic nematodes.
Keywords:Parasitic nematode  Strongyloides stercoralis  Mitochondrial genome  Gene arrangement  Evolution
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号