Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal: novel application of membrane-aerated biofilm |
| |
Authors: | Terada Akihiko Yamamoto Tetsuya Tsuneda Satoshi Hirata Akira |
| |
Affiliation: | Department of Chemical Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan. |
| |
Abstract: | A sequencing batch membrane biofilm reactor (SBMBfR) was developed for simultaneous carbon, nitrogen, and phosphorus removal from wastewater. This reactor was composed of two functional parts: (1) a gas-permeable membrane on which a nitrifying biofilm formed and (2) a bulk solution in which bacteria, mainly denitrifying polyphosphate-accumulating organisms (DNPAOs), were suspended. The reactor was operated sequentially under anaerobic condition and then under membrane aeration condition in one cycle. During the anaerobic period, organic carbon was consumed by DNPAOs; this was accompanied by phosphate release. During the subsequent membrane aeration period, nitrifying bacteria utilized oxygen supplied directly to them from the inside of the membrane. Consequently, the nitrite and nitrate products diffused into the bulk solution, where they were used by DNPAOs as electron acceptors for phosphate uptake. In a long-term sequencing batch operation, the mean removal efficiencies of total organic carbon (TOC), total nitrogen (T-N), and total phosphorus (T-P) under steady-state condition were 99%, 96%, and 90%, respectively. In addition, fluorescence in situ hybridization (FISH) clearly demonstrated the difference in bacterial community structure between the membrane biofilm and the suspended sludge: ammonia-oxidizing bacteria belonging to the Nitrosomonas group were dominant in the region adjacent to the membrane throughout the operation, and the occupation ratio of the well-known polyphosphate-accumulating organism (PAO) Candidatus "Accumulibacter phosphates" in the suspended sludge gradually increased to a maximum of 37%. |
| |
Keywords: | gas‐permeable membrane sequencing batch membrane biofilm reactor (SBMBfR) membrane aeration simultaneous nitrogen and phosphorus removal denitrifying polyphosphate‐accumulating organisms (DNPAOs) |
本文献已被 PubMed 等数据库收录! |
|