首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Subunit assembly and metabolic stability of E. coli RNA polymerase
Authors:A Ishihama  N Fujita  R E Glass
Institution:Department of Molecular Genetics, National Institute of Genetics, Shizuoka, Japan.
Abstract:Immunological cross-reaction was employed for identification of proteolytic fragments of E. coli RNA polymerase generated both in vitro and in vivo. Several species of partially denatured but assembled RNA polymerase were isolated, which were composed of fragments of the two large subunits, beta and beta', and the two small and intact subunits, alpha and sigma. Comparison of the rate and pathway of proteolytic cleavage in vitro of unassembled subunits, subassemblies, and intact enzymes indicated that the susceptibility of RNA polymerase subunits to proteolytic degradation was dependent on the assembly state. Using this method, degradation in vivo was found for some, but not all, of the amber fragments of beta subunit in merodiploid cells carrying both wild-type and mutant rpoB genes. Although the RNA polymerase is a metabolically stable component in exponentially growing cells of E. coli, degradation of the full-sized subunits was found in two cases, i.e., several temperature-sensitive E. coli mutants with a defect in the assembly of RNA polymerase and the stationary-phase cells of a wild-type E. coli. The in vivo degradation of RNA polymerase was indicated to be initiated by alteration of the enzyme structure.
Keywords:proteolytic cleavage  immunological cross-reaction  amber fragment  temperature-sensitive mutant  stationary growth-phase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号