首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Light-Harvesting System of the Red Alga Gracilaria tikvahiae: II. Phycobilisome Characteristics of Pigment Mutants
Authors:Kursar T A  van der Meer J  Alberte R S
Institution:Department of Biophysics and Theoretical Biology, The University of Chicago, Chicago, Illinois 60637.
Abstract:Phycobilisomes were isolated from wild type Gracilaria tikvahiae and a number of its genetically characterized Mendelian and non-Mendelian pigment mutants in which the principal lesions result in an increase or decrease in the accumulation of phycoerythrin. Both the size and phycoerythrin content of the phycobilisomes are proportional to the phycoerythrin content of the crude algal extracts. In most of the strains examined, the structure and function of the phycocyanin-allophycocyanin phycobilisome cores are the same as in wild type. The phycobilisome architecture is derived from wild type by the addition or removal of phycoerythrin. The same pattern is observed for the phycobilisome of mos2 which contains a large excess of phycocyanin that is not bound to the phycobilisome. The single exception is a yellow, non-Mendelian mutant, NMY-1, which makes functional phycobilisomes composed of phycoerythrin and allophycocyanin with almost no phycocyanin. Characterization of the `linker' polypeptides of the phycobilisome indicates that a 29 kilodalton protein is required for the stable incorporation of phycocyanin into the phycobilisome. Evidence is provided for the requirement of nuclear and cytoplasmic genes in phycobilisome synthesis and assembly. The symmetry properties of the phycobilisome are considered and a structural model for the reaction center II-phycobilisome organization is presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号