首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bichemical genetics of bacterial sporulation
Authors:Georges Balassa
Institution:(1) Division of Biology, California Institute of Technology, Pasadena, California;(2) Institut de Biologie Physico-Chimique, 13 rue Pierre Curie, Paris 5e, France
Abstract:Summary Pleitropic interactions among genes controlling the formation of bacterial spores and of sporulation-associated products are studied. In order to obtain sporulation mutants, spores have been germinated in the presence of chloramphenicol and then treated with nitrosoguanidine. In the most favorable conditions 25% of sporulation mutants have been found among the 40% surviving bacteria. This number is at least four times higher than the number of auxotrophic mutants, therefore a rough estimate of the number of genes involved in sporulation is 800.Rapid plate-tests have been developed for the oxidation of terrazolium salts, the formation of various proteolytic enzymes and the production of antibiotics. Although the exact biochemical nature of the products is not yet known, the results suggest that distinct factors, probably various enzymes (including several proteases) are detected by these tests. All of them are associated with spore formation and absent from a large number of sporulation mutants. Using these tests, the phenotypes of 500 randomly selected sporulation mutants were determined. No important differences were found between asporogenous and oligosporogenous mutants. The number of mutants deficient for several sporulation-associated characters is large, pleiotropic interactions following a defined pattern are observed. Statistical analysis indicates the existence of a unidirectional pleiotropic system. All the results agree with the hypothesis of sequential gene activation. Consequently, the sporulation-associated characters can be ordered into a linear sequence, presumably reflecting the consecutive steps in spore formation. The order obtained is the following: gelatinase, proteases acting on casein and on denatured albumin, oxidation of tetrazolium No 7, digestion of protamine, production of antibiotics (against a Staphylococcus and a Bacillus), hydrolysis of hemoglobin, oxidation of tetrazolium No 2, digestion of native albumin, synthesis of elastase. Another category of mutants, blocked in a late step of sporulation and apparently derepressed for the formation of elastase, is also described.In conclusion, arguments are put forward in favor of sequential gene activation. Sporulation genes, related by unidirectional pleiotropic interactions, form a sporulon. Generalization of this concept to other differentiating systems (a differon), its predictions and possible experimental confirmation are considered.The author was a Gosney Research Fellow in 1966/67, on leave of absence from the Centre National de la Recherche Scientifique, Paris. Present adress: see end of paper.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号