首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Importance of Glu(282) in transmembrane segment M3 of the Na(+),K(+)-ATPase for control of cation interaction and conformational changes
Authors:Toustrup-Jensen Mads  Vilsen Bente
Institution:Department of Physiology, University of Aarhus, Ole Worms Allé 160, DK-8000 Aarhus C, Denmark.
Abstract:Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the conformational transitions between E(1) and E(2) forms of dephospho- and phosphoenzyme, (ii) Na(+) binding at the cytoplasmically facing sites of E(1), and (iii) long-range interaction controlling dephosphorylation. In mutants Glu(282) --> Lys and Glu(282) --> Asp, the E(1) form was favored during ATP hydrolysis, whereas the E(2) form was favored in Glu(282) --> Ala and Glu(282) --> Gly. Regardless of the change of conformational equilibrium, all the mutants displayed a reduced apparent affinity for Na(+), at least 3-fold for Glu(282) --> Lys and Glu(282) --> Asp, suggesting a direct effect on the Na(+) binding properties of E(1). Glu(282) --> Ala and Glu(282) --> Gly exhibited an extraordinary high rate of ATP hydrolysis in the mere presence of Na(+) without K(+) ("Na(+)-ATPase activity"), because of an increased rate of dephosphorylation of E(2)P. These results are in accordance with the hypothesis that Glu(282) is involved in the communication between the cation binding pocket and the catalytic site and in control of the cytoplasmic entry pathway for Na(+).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号