首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The kinetics of ammonium and nitrate uptake by young rice plants
Authors:L J Youngdahl  R Pacheco  J J Street  P L G Vlek
Institution:(1) International Fertilizer Development Center Muscle Shoals, Alabama, USA
Abstract:Summary An important process which affects the fate of fertilizer nitrogen (N) applied to a rice crop is crop N uptake. This uptake rate is controlled by many factors including the N-ion species and its concentration. In this study the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation considers two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of intact rice plants growing in a continuously flowing nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4−N the Km values for 4- and 9-week-old rice plants indicated a high affinity for the ammonium ions relative to concentrations reported for rice soils after fertilization. The Vmax values expressed on a unit-root-mass basis decreased with plant age, indicating a reduction in the average density of uptake sites on the root surface. The kinetics of NO3−N uptake was similar to that of NH4−N when NO3−N was the only N source. However, if NH4−N and NO3−N were present simultaneously in the solution the Vmax for the uptake of NO3−N was severely reduced, while the Km was affected very little. This inhibition appears to be noncompetitive. Fertilization of young rice plants leading to concentration of N at the root surface above approximately 900 μM will not increase crop uptake and may contribute to inefficient N recovery by the crop. The existence of NH4−N and NO3−N simultaneously at the root surface may also lead to inefficient N recovery because of reduced uptake of NO3−N.
Keywords:Ammonium  Nitrate  Nutrient interactions            Oryza sativa            Rice  Solution culture  Uptake kinetics
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号