首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Short term and long term effects of beta-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle
Authors:A Schmid  J F Renaud  M Lazdunski
Abstract:The effects of short term stimulation of beta-adrenergic receptors and elevations in intracellular cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle cells in vitro has been studied using both the 45Ca2+ flux technique and 3H] nitrendipine-binding experiments. Isoproterenol increased the nitrendipine-sensitive 45Ca2+ influx under depolarizing conditions. The effects of isoproterenol were additive to those of depolarization and were antagonized by alprenolol. Half-maximal inhibition of 45Ca2+ influx induced both by depolarization and by isoproterenol occurred at a nitrendipine concentration of 1 nM. Treatments that resulted in an increased level of intracellular cyclic AMP, such as treatment with 1-methyl-3-isobutylxanthine, theophylline, dibutyryl cyclic AMP, or 8-bromocyclic AMP also resulted in an increased rate of 45Ca2+ entry via nitrendipine-sensitive Ca2+ channel. In contrast, long term treatment of myotubes in culture with isoproterenol and other compounds that increased intracellular cyclic AMP led to a large increase in the number of nitrendipine receptors. This increase was accompanied by a 4-10-fold decrease in the affinity of the receptors for nitrendipine. Alprenolol inhibited the long term effects of isoproterenol. In vivo treatment of 7-day-old chicks with reserpine and alprenolol produced a decrease in the number of skeletal muscle nitrendipine receptors. This decrease in receptor number was accompanied by an increase in the affinity of nitrendipine for its receptor by a factor of 4 to 5. These effects on the nitrendipine receptor were prevented by simultaneous injection of isoproterenol. The results are discussed in relation to the role of beta-adrenergic receptors and intracellular cyclic AMP in the regulation of skeletal muscle Ca2+ channels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号