p18INK4c and p27KIP1 are required for cell cycle arrest of differentiated myotubes |
| |
Authors: | Myers Terri K Andreuzza Sébastien E Franklin David S |
| |
Affiliation: | Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. |
| |
Abstract: | Myogenic differentiation is characterized by permanent and irreversible cell cycle withdrawal and increased resistance to apoptosis. These functions correlate with changes in expression and activity of several cyclin-dependent kinase inhibitors, including p18, p21, and p27. In this study, we examined the requirements for p18, p21, and p27 in initiating growth arrest in multinucleated myotubes under differentiation conditions and in maintaining terminal arrest upon restimulation of differentiated myotubes with mitogenic signals. Under differentiation conditions, only p27(-/-) or p18(-/-)p27(-/-) myotubes are capable of reentering the cell cycle and synthesizing DNA at a very low frequency. Escape from cell cycle arrest was significantly greater in p18(-/-)p27(-/-) myotubes than in p27(-/-) myotubes. Stimulation of differentiated cultures with a mitogen-rich growth medium enhances p18(-/-)p27(-/-) myotube proliferation to encompass approximately half of the nuclei. p18(-/-)p21(-/-) and p21(-/-)p27(-/-) myotubes remain terminally arrested. Nuclei within individual restimulated p18(-/-)p27(-/-) myotubes can be found in all phases of the cell cycle, and a myotube can be multiphasic without any obvious deleterious effects. Increasing the time of differentiation or serum stimulation of p18(-/-)p27(-/-) myotubes neither increases the proliferation index of the myotube nuclei, nor does it alter the percentage of nuclei in each of the cell cycle phases. During the first 24 h of serum stimulation, the p18(-/-)p27(-/-) myotube nuclei that escape G0 arrest will rearrest in either S or G2 phase, without either mitosis or endoreplication. Apoptosis is increased in restimulated p18(-/-)p27(-/-) myotube nuclei, but is not specific for any cell cycle phase. These results suggest a collaborative role for p18 and p27 in initiating and maintaining G0 arrest during myogenic differentiation. While p18 and p27 appear to be essential in initiating G0 arrest in a proportion of postmitotic myotube nuclei, there must be another cell cycle inhibitor protein that functions with p18 and p27 in maintaining terminal arrest. We propose that the combined rate-limiting expressions of p18, p27, and this other inhibitor determine whether the myotube nuclei will remain postmitotic, or reenter the cell cycle, and if the nuclei escape G0 arrest, in which phase of the cell cycle the nuclei will ultimately rearrest. |
| |
Keywords: | p18INK4c p27KIP1 Cell cycle arrest |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|