首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC.
Institution:1. Department of Botany, Government College University, Faisalabad, Pakistan;2. Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia;3. Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
Abstract:Soil and water contamination with chromium is an issue of recent concern in Thailand due to increases in industrial activity. Gynura pseudochina (L.) DC., a chromium tolerance plant, could be employed to address this problem via phytoremediation. To understand the tolerance mechanism, this study investigated the speciation and distribution of chromium accumulated in G. pseudochina (L.) DC. using AAS, XAFS, μ-XANES, μ-XRF imaging and EPR. The plants were separately treated with K2Cr2O7 and Cr2(SO4)3 in a hydroponic system. μ-XRF imaging clarified the distributions of Cr, Fe, Zn, Ca, Cl, K and S within the samples. In G. pseudochina (L.) DC. treated with Cr(VI) solution, the Cr was mainly distributed in the vascular bundle and periderm of the tuber, the stem xylem, the vein and the epidermis, including the trichome of the leaf tissues. This Cr distribution corresponded to those of Cu, Fe and Zn. In G. pseudochina (L.) DC. treated with Cr(III) solution, the Cr was distributed in the periderm of the tuber, the stem cortex, and the epidermis and parenchyma of the leaf tissues. μ-XANES and XAFS indicated that highly toxic Cr(VI) was reduced to the intermediate Cr(V) and accumulated as less toxic Cr(III), and EXAFS spectra showed that the reduced Cr(III) was bound to oxygen ligands. The coordination number (N) and the interatomic distance (R) to the first shell were approximately 3–4 (N) and 2 Å (R), respectively. EPR spectra of the plant samples treated with Cr(VI) revealed the presence of Cr(V) and Cr(III). Thus, Cr(III) and Cr(VI) were taken up into the vascular system and transported from the roots to the leaves. Cr(III) was distributed via the symplast system to the ground tissue and accumulated mainly in the stem cortex. Cr(VI) was transported to the xylem via the apoplast system, and the adsorption of Cr(VI) and its reduction to Cr(V) and Cr(III) occurred on oxygen ligands in the lignocellulosic structure of the xylem and vein.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号