首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure-function relationship of substrate length specificity of dextran glucosidase from <Emphasis Type="Italic">Streptococcus mutans</Emphasis>
Authors:Wataru Saburi  Hironori Hondoh  Young-Min Kim  Haruhide Mori  Masayuki Okuyama  Atsuo Kimura
Institution:(1) Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan;(2) Nihon Shokuhin Kako Co., LTD., Shizuoka 417-8530, Japan
Abstract:Dextran glucosidase from Streptococcus mutans (SMDG), an exo-type glucosidase of glycoside hydrolase (GH) family 13, specifically hydrolyzes an α-1,6-glucosidic linkage at the non-reducing ends of isomaltooligosaccharides and dextran. SMDG shows the highest sequence similarity to oligo-1,6-glucosidases (O16Gs) among GH family 13 enzymes, but these enzymes are obviously different in terms of substrate chain length specificity. SMDG efficiently hydrolyzes both short-and long-chain substrates, while O16G acts on only short-chain substrates. We focused on this difference in substrate specificity between SMDG and O16G, and elucidated the structure-function relationship of substrate chain length specificity in SMDG. Crystal structure analysis revealed that SMDG consists of three domains, A, B, and C, which are commonly found in other GH family 13 enzymes. The structural comparison between SMDG and O16G from Bacillus cereus indicated that Trp238, spanning subsites +1 and +2, and short βα loop 4, are characteristic of SMDG, and these structural elements are predicted to be important for high activity toward long-chain substrates. The substrate size preference of SMDG was kinetically analyzed using two mutants: (i) Trp238 was replaced by a smaller amino acid, alanine, asparagine or proline; and (ii) short βα loop 4 was exchanged with the corresponding loop of O16G. Mutant enzymes showed lower preference for long-chain substrates than wild-type enzyme, indicating that these structural elements are essential for the high activity toward long-chain substrates, as implied by structural analysis.
Keywords:dextran glucosidase  oligo-1  6-glucosidase  substrate specificity  site-directed mutagenesis  crystal structure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号