首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Ca2+-activated K+ channel and its functional roles in smooth muscle cells of guinea pig taenia coli
Authors:S L Hu  Y Yamamoto  C Y Kao
Institution:Department of Pharmacology, State University of New York, Downstate Medical Center, Brooklyn 11203.
Abstract:Currents through single potassium channels were studied in cell-attached or inside-out patches from collagenase-dispersed smooth muscle cells of the guinea pig taenia coli. Under conditions mimicking the physiological state with K+]i = 135 mM: K+]o = 5.4 mM, three distinct types of K+ channel were identified with conductances around 0 mV of 147, 94, and 63 pS. The activities of the 94- and 63-pS channel were observed infrequently. The 147-pS channel was most abundant. It has a reversal potential of approximately -75 mV. It is sensitive to Ca2+]i and to membrane potential. At -30 mV, the probability of a channel being open is at a minimum. At more positive voltages, the probability follows Boltzman distribution. A 10-fold change in Ca2+]i causes a 25-mV negative shift of the voltage where half of the channels are open; an 11.3-mV change in membrane potential produces an e-fold increase in the probability of the channel being open when P is low. At voltages between -30 and -50 mV, the open probability increases in an anomalous manner because of a large decrease of the channel closed time without much change in the channel open time. This anomalous activity may play a regulatory role in maintaining the resting potential. The histograms of channel open and closed time fit well, respectively, with single and double exponential distributions. Upon step depolarizations by 100-ms pulses, the 147-pS channel opens with a brief delay. The delay shortens and both the number of open channels and the open time increase with increasing positivity of the potential. The averaged currents during the step depolarizations closely resemble the delayed rectifying outward K+ currents in whole-cell recordings.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号