首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polyamines in Human Brain: Regional Distribution and Influence of Aging
Authors:Lesley D Morrison  Laurence Becker  †Lee C Ang  Stephen J Kish
Institution:Wellcome Research Laboratories, Beckenham, Kent, England
Abstract:Abstract: Depolarization of adult rat forebrain slices with veratrine induced the release of excitatory amino acids (glutamate and aspartate), the synthesis of nitric oxide (NO), and increases in cyclic GMP (cGMP). The NO synthase inhibitors N ω-monomethyl- l -arginine and N ω-nitro- l -arginine methyl ester decreased the release of NO and the levels of cGMP without affecting the release of excitatory amino acids. In contrast, the antiepileptic drug lamotrigine inhibited the release of excitatory amino acids and of NO, and decreased the levels of cGMP without causing a significant direct inhibition of the NO synthase. Furthermore, the synthesis of NO and the increases in cGMP induced by veratrine were partially blocked by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801 but not by 6-nitro-7-sulphamobenzo( f )quinoxaline-2,3-dione, a non-NMDA receptor antagonist. Neither of these compounds inhibited directly the NO synthase or the release of excitatory amino acids. Thus, these three types of compound act as an inhibitor of voltage-sensitive sodium channels (lamotrigine), as a receptor antagonist (MK-801), or as direct inhibitors of the NO synthase, to block the pathway leading to increased cGMP after veratrine depolarization. It is likely that some of the pharmacological and therapeutic actions shared by these three types of compound are, at least in part, a consequence of inhibition of the synthesis of NO.
Keywords:Aspartate  Cyclic GMP  Glutamate  Lamictal  Nitric oxide synthase  NMDA
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号