首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression
Authors:Herron T J  Korte F S  McDonald K S
Institution:Department of Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA.
Abstract:The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca(2+) activation (P(pCa4.5)). MHC expression was determined after mechanical measurements using SDS-PAGE. Both alpha-MHC and beta-MHC myocytes generated similar maximal Ca(2+)-activated force, but alpha-MHC myocytes shortened faster at all loads and generated approximately 170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (F(opt)) was greater in alpha-MHC myocytes. F(opt) was 0.31 +/- 0.03 P(pCa4.5) and 0.20 +/- 0.06 P(pCa4.5) for alpha-MHC and beta-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号