首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of PKCζ‐NADPH oxidase signaling axis in PKCα‐mediated Giα2 phosphorylation for inhibition of adenylate cyclase activity by angiotensin II in pulmonary artery smooth muscle cells
Authors:Animesh Chowdhury  Jaganmay Sarkar  Pijush Kanti Pramanik  Tapati Chakraborti  Sajal Chakraborti
Abstract:We sought to determine the mechanism by which angiotensin II (AngII) inhibits isoproterenol induced increase in adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) production in bovine pulmonary artery smooth muscle cells (BPASMCs). Treatment with AngII stimulates protein kinase C‐ζ (PKC‐ζ), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and PKC‐α activities, and also inhibits isoproterenol induced increase in AC activity and cAMP production in the cells. Pertussis toxin pretreatment eliminates AngII caused inhibition of isoproterenol induced increase in AC activity without a discernible change in PKC‐ζ, NADPH oxidase, and PKC‐α activities. Treatment of the cells with AngII increases α2 isoform of Gi (Giα2) phosphorylation; while pretreatment with chemical and genetic inhibitors of PKC‐ζ and NADPH oxidase attenuate AngII induced increase in PKC‐α activity and Giα2 phosphorylation, and also reverse AngII caused inhibition of isoproterenol induced increase in AC activity. Pretreatment of the cells with chemical and genetic inhibitors of PKC‐α attenuate AngII induced increase in Giα2 phosphorylation and inhibits isoproterenol induced increase in AC activity without a discernible change in PKC‐ζ and NADPH oxidase activities. Overall, PKCζ‐NADPH oxidase‐PKCα signaling axis plays a crucial role in Giα2 phosphorylation resulting in AngII‐mediated inhibition of isoproterenol induced increase in AC activity in BPASMCs.
Keywords:adenylate cyclase  angiotensin II  cyclic AMP  Giα    NADPH oxidase  PKC  pulmonary smooth muscle cells
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号