首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Responses of the macroalga Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress
Authors:Jingwen Liu  Shuanglin Dong  Xiaoyun Liu  Shen Ma
Institution:(1) Aquaculture Research Laboratory, Ocean University of Qingdao, Qingdao, 266003, P.R. China
Abstract:Chlorophyll (Chl), phycoerythrin (PE), total nitrogen (TN% dw) and Fein tissues were measured in Fe-deficient cultures of Gracilariatenuistipitata var. liui over a period of 60 days. 55Fe uptakeand photosynthetic carbon fixation (NaH14CO3) werecompared in Fe-rich and Fe-deficient cultures and analyzed the effects ofFe-deficiency on the ultrastructure. The maximum carbon fixationdecreased significantly (p < 0.01) under Fe-deficiency. Thechlorophyll and phycoerythrin contents also declined with decreasing tissueiron content, falling, respectively, to 7.9 and 33.8% of their originallevel. Photosynthesis in Fe-deficient cells became light-saturated at lowerirradiance than the control. Total N in tissue decreased from 3.65 to2.49%. 55Fe uptake rate for cultures grown on NO3 -was measured following resuspension in either NH4 + orNO3 - as N source. Enhanced Fe uptake developedunder Fe stress, especially with cells resuspended in NH+ 4-N medium. The Vmaxfor Fe uptake was higher with NH4 + thanNO3 - (62.8 versus 12.1 pmol mg dw-1 h-1). The requirement for N accelerates further Fe uptake. Ultrastructuralobservations of Fe-deficient cells showed reductions in chloroplast number,degeneration of lamellar organization, decrease in mitochondrial matrixdensity and variation in accumulation body number and morphology. During Fe-deficiency, the growth rate continued to decline and after 40days of iron deficiency, no further growth was detectable, and eventuallyiron deficiency resulted in chlorosis. The results suggest that the lowergrowth rate of Gracilaria tenuistipitata var. liui underFe-deficiency may result from largely from inhibition of photosynthesis andnitrogen utilization.
Keywords:carbon fixation  Gracilaria tenuistipitata var  liui  iron stress  iron uptake
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号