Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers |
| |
Authors: | Jia-Hua Li Atsushi Nesumi Keiichi Shimizu Yusuke Sakata Ming-Zhi Liang Qing-Yuan He Hong-Jie Zhou Fumio Hashimoto |
| |
Affiliation: | 1. Department of Horticultural Science, Faculty of Agriculture and The United Graduate School of Agricultural Science, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan;2. National Institute of Vegetable and Tea Science, 87 Seto, Makurazaki, Kagoshima 898-0087, Japan;3. Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menhai County, Xishuangbanna, Yunnan 666201, China;4. College of Long Run Puer Tea, Yunnan Agricultural University, Heilongtan, Kunming 650201, China |
| |
Abstract: | This study examined the polyphenols of tea leaves as chemotaxonomic markers to investigate the phenetic relationship between 89 wild (the small-leaved C. sinensis var. sinensis and large-leaved C. sinensis var. assamica), hybrid, and cultivated tea trees from China and Japan. (?)-Epigallocatechin 3-O-gallate, EGCG (1); (?)-epigallocatechin, EGC (2); (?)-epicatechin 3-O-gallate, ECG (3); (?)-epicatechin, EC (4); (+)-catechin, CA (5); strictinin, STR (6); and gallic acid, GA (7) were used as polyphenolic markers. Of the 13 polyphenol patterns observed, Principal Component Analysis (PCA) indicated that the structure-types of the flavonoid B-rings, such as the pyrogallol-(EGCG (1) and EGC (2)) and catechol-(ECG (3) and EC (4)) types, greatly influenced the classification. Ward’s minimum-variance cluster analysis was used to produce a dendrogram that consisted of three sub-clusters. One sub-cluster (A) was composed of old tea trees ‘Gushu’ cha (C. sinensis var. assamica) and cv ‘Taidi’ cha, suggesting that relatively primitive tea trees contain greater amounts of compounds 3 and 4 and lower amounts of compounds 1 and 2. The other two sub-clusters B and C, made up of Chinese hybrids (sub-cluster B) and Japanese and Taiwanese tea trees (sub-cluster C), had lower contents of 3 and 4 than sub-cluster A. Therefore, PCA and cluster analysis indicated that the greater the amounts of 1 and 2 (and the lower of 3 and 4), the more recent the origin of the tea line. Based on morphological characteristics, geographical information, and the historical information on tea trees, these results show good agreement with the current theory of tea tree origins, and this suggests that the Xishuangbanna district and Puer City are among the original sites of the tea tree species. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|