首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular recognition between oligopeptides and nucleic acids. DNA sequence specificity and binding properties of an acridine-linked netropsin hybrid ligand
Authors:C Bailly  N Helbecque  J P Hénichart  P Colson  C Houssier  K E Rao  R G Shea  J W Lown
Affiliation:INSERM U 16, Lille, France.
Abstract:The binding to DNA of a mixed function ligand (NETGA) is described, in which a potential intercalating group, an acridine moiety, is incorporated at the carboxyl terminus of the minor groove binding oligopeptide netropsin skeleton. Scatchard analysis of absorption data provided evidence of two modes of binding to DNA with K1 = 9.1 x 10(5) M-1 at low r values (0.003-0.1), and a binding site size n = 10, indicative of binding of both moeities. At high binding ratios (greater than 0.1), K2 = 0.9 x 10(5) M-1 and n = 5 corresponding to external binding. Complementary strand MPE footprinting on a pBR322 restriction fragment showed NETGA binds to 5'-AAAT like netropsin. It causes enhanced cleavage by MPE, particularly at G-C rich sequences and remote from the preferred binding sites. Viscometry measurements provided evidence for biphasic modes of the two binding portions of NETGA. Fluorescence polarization and linear dichroism measurements were in accord with distinct modes of interaction of the acridine (intercalation) and oligopeptide (minor groove binding) portions of NETGA. LD measurements on NETGA indicate that the oligopeptide moiety (netropsin-like) has an orientation typical of minor groove binders, whereas the degree of intercalation of the acridine group is decreased by association of the oligopeptide moiety.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号