首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of lindane on membrane fluidity: intramolecular excimerization of a pyrene derivative and polarization of diphenylhexatriene.
Authors:M C Antunes-Madeira  L M Almeida  V M Madeira
Institution:Centro de Biologia Celular, Departamento de Zoologia, Coimbra, Portugal.
Abstract:Fluorescence polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH) have been compared with the excimer/monomer fluorescence intensity ratio (I'/I) of 1,3-di(2-pyrenyl)propane, (2Py(3)2Py). This ratio permits evaluation of changes in fluidity of the outer regions of the bilayer, where 2Py(3)2Py preferentially distributes. On the other hand, fluorescence polarization of DPH reports the structural order of the bilayer core. In the fluid phase of DMPC bilayers, for lindane concentrations higher than 25 microM, the excimer/monomer fluorescence intensity ratio (I'/I) decreases, thus reflecting an order increase of the probe environment. However, in the same conditions, the fluorescence polarization of DPH is almost insensitive to any perturbation. Identical results have been obtained in other pure lipid bilayers, namely DPPC and DSPC. However, both probes detect disordering effects of lindane in the gel phase of these lipids. The pyrene probe, unlike DPH, is very sensitive to the pretransitions of DPPC and DSPC, removed in the presence of lindane. Both probes fail to detect any apparent effect of lindane in DMPC bilayers enriched with high cholesterol content (greater than 30 mol%). However, in DMPC bilayers with low cholesterol content (less than 30 mol%), for temperatures below the phase transition of DMPC, both probes detect fluidizing effects induced by lindane. Nevertheless, above the phase transition of DMPC, 2Py(3)2Py detects ordering effects of lindane, whereas DPH detects hardly any effect. These results in DMPC bilayers with low cholesterol content are qualitatively similar to those described for DMPC without cholesterol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号