首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Anaerobic iron deposition into horse spleen, recombinant human heavy and light and bacteria ferritins by large oxidants
Authors:Zhang Bo  Watt Gerald D
Institution:Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA.
Abstract:Large-molecule oxidants oxidize Fe(II) to form Fe(III) cores in the interior of ferritins at rates comparable to or faster than the iron deposition reaction using O(2) as oxidant. Iron deposition into horse spleen ferritin (HoSF) occurs using ferricyanide ion, 2,6-dichlorophenol-indophenol, and several redox proteins: cytochrome c, stellacyanin, and ceruloplasmin. Cytochrome c also loads iron into recombinant human H-chain (rHF), human L-chain (rLF), and A. vinelandii bacterioferritin (AvBF). The enzymatic activities of ferritins were monitored anaerobically using stopped-flow kinetic spectrophotometry. The reactions exhibit saturation kinetics with respect to the large oxidant concentrations, giving apparent Michaelis constants for cytochrome c as oxidant: K(m)=39.6 microM for HoSF and 6.9 microM for AvBF. Comparison of the kinetic parameters with that of iron deposition by O(2) shows that large oxidants load iron into HoSF and AvBF more effectively than O(2) and may use a mechanism different than the ferroxidase center. Large oxidants did not deposit iron as efficiently with rHF and rLF. The results suggest that the heme groups in AvBF and the protein redox centers present in heteropolymers may assist in anaerobic iron deposition by large oxidants. The physiological relevance of iron deposition by large molecules, including protein oxidants is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号