首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Breath-by-breath assessment of alveolar gas stores and exchange.
Authors:A Aliverti  B Kayser  P T Macklem
Institution:Dipartimento di Bioingegneria, Politecnico di Milano, 20133 Milano, Italy. andrea.aliverti@polimi.it
Abstract:The volume of O(2) exchanged at the mouth during a breath (Vo(2,m)) is equal to that taken up by pulmonary capillaries (Vo(2,A)) only if lung O(2) stores are constant. The latter change if either end-expiratory lung volume (EELV), or alveolar O(2) fraction (Fa(O(2))) change. Measuring this requires breath-by-breath (BbB) measurement of absolute EELV, for which we used optoelectronic plethysmography combined with measurement of O(2) fraction at the mouth to measure Vo(2,A) = Vo(2,m) - (DeltaEELV x Fa(O(2)) + EELV x DeltaFa(O(2))), and divided by respiratory cycle time to obtain BbB O(2) consumption (Vo(2)) in seven healthy men during incremental exercise and recovery. To synchronize O(2) and volume signals, we measured gas transit time from mouthpiece to O(2) meter and compared Vo(2) measured during steady-state exercise by using expired gas collection with the mean BbB measurement over the same time period. In one subject, we adjusted the instrumental response time by 20-ms increments to maximize the agreement between the two Vo(2) measurements. We then applied the same total time delay (transit time plus instrumental delay = 660 ms) to all other subjects. The comparison of pooled data from all subjects revealed r(2) = 0.990, percent error = 0.039 +/- 1.61 SE, and slope = 1.02 +/- 0.015 (SE). During recovery, increases in EELV introduced systematic errors in Vo(2) if measured without taking DeltaEELV x Ca(O(2))+EELV x DeltaFa(O(2)) into account. We conclude that optoelectronic plethysmography can be used to measure BbB Vo(2) accurately when studying BbB gas exchange in conditions when EELV changes, as during on- and off-transients.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号