首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase
Authors:Bachmann Julie  Bauer Brigitte  Zwicker Klaus  Ludwig Bernd  Anderka Oliver
Institution:Institut für Biochemie, Johann Wolfgang Goethe-Universit?t, D-60438 Frankfurt, Germany.
Abstract:The Rieske 2Fe-2S] protein (ISP) is an essential subunit of cytochrome bc(1) complexes in mitochondrial and bacterial respiratory chains. Based on the presence of two consecutive arginines, it was argued that the ISP of Paracoccus denitrificans, a Gram-negative soil bacterium, is inserted into the cytoplasmic membrane via the twin-arginine translocation (Tat) pathway. Here, we provide experimental evidence that membrane integration of the bacterial ISP indeed relies on the Tat translocon. We show that targeting of the ISP depends on the twin-arginine motif. A strict requirement is established particularly for the second arginine residue (R16); conservative replacement of the first arginine (R15K) still permits substantial ISP transport. Comparative sequence analysis reveals characteristics common to Tat signal peptides in several bacterial ISPs; however, there are distinctive features relating to the fact that the presumed ISP Tat signal simultaneously serves as a membrane anchor. These differences include an elevated hydrophobicity of the h-region compared with generic Tat signals and the absence of an otherwise well-conserved '+5'-consensus motif lysine residue. Substitution of the +5 lysine (Y20K) compromises ISP export and/or cytochrome bc(1) stability to some extent and points to a specific role for this deviation from the canonical Tat motif. EPR spectroscopy confirms cytosolic insertion of the 2Fe-2S] cofactor. Mutation of an essential cofactor binding residue (C152S) decreases the ISP membrane levels, possibly indicating that cofactor insertion is a prerequisite for efficient translocation along the Tat pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号