首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calmodulin and calcium-release channels
Authors:Kasri Nael Nadif  Parys Jan B  Callewaert Geert  Missiaen Ludwig  De Smedt Humbert
Institution:Laboratorium voor Fysiologie, K.U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium.
Abstract:Calmodulin (CaM) is a ubiquitous cytosolic protein that plays a critical role in regulating cellular functions by altering the activity of a large number of ion channels. There are many examples for CaM directly mediating the feedback effects of Ca2+ on Ca2+ channels. Recently the molecular mechanisms by which CaM interacts with voltage-gated Ca2+ channels, Ca(2+)-activated K+ channels and ryanodine receptors have been clarified. CaM plays an important role in regulating these ion channels through lobe-specific Ca2+ detection. CaM seems to behave as a channel subunit. It binds at low Ca2+] and undergoes conformational changes upon binding of Ca2+, leading to an interaction with another part of the channel to regulate its gating. Here we focus on the mechanism by which CaM regulates the inositol 1,4,5-trisphosphate receptor (IP3R). Although the IP3R is inhibited by CaM and by other CaM-like proteins in the presence of Ca2+, we conclude that CaM does not act as the Ca2+ sensor for IP3R function. Furthermore we discuss a novel Ca(2+)-induced Ca(2+)-release mechanism found in A7r5 (embryonic rat aorta) and 16HBE14o- (human bronchial mucosa) cells for which CaM acts as a Ca2+ sensor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号